基于时变稀疏度 HAR 模型的 沪铜已实现波动率预测

报告人: 141292018 桑梓洲

指导教师: 瞿慧 副教授

南京大学 工程管理学院

2019年05月31日

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

总述

RV 预测因子

NGAR 过程与 MCMC 求解

MCS 检验与实验结论

总结

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

选题背景

- ▶ 波动率预测应用广泛且至关重要
- ▶ 普通回归中的恒定系数不符合金融市场的动态本质

主要思路

- ▶ 恒定系数 → 时变系数
- ▶ 固定预测因子 → 动态模型结构,变量自由进出
- ▶ 不同变量预测效果不同 → 全部纳入
- ▶ 变量过多导致过拟合 → 正则化

核心思想

假定各系数服从 NGAR 随机过程,以稀疏度参数控制大部 分系数为零避免过拟合,并通过 MCMC 拟合更新后验分布.

图 1: NGAR 过程中的部分效果图示

文章总览

核心文献

- ▶ Kalli 和 Griffin (2014)¹:提出基于 NGAR 的动态回归预测
- ▶ Tian 等 (2017)²:将 K&G (2014) 模型应用到波动率预测

实现步骤

- ✓ 从 5 分钟高频数据,计算 RV 及其相关的十个日统计量
- ✓ 应用 NGAR 过程,构建动态回归模型并预测
- ✓ 将结果与主流 HAR 模型对比,进行稳健性检验并得出结论 创新贡献

1. 对 Tian 等 (2017) 疑将 TPV 误作 TMPV 使用进行修正

2. 将 Tian 等 (2017) TJ+1 统计量改进为 TJ+10⁻¹

3. 将 Tian 等 (2017) 标的资产从农产品移至沪铜期货检验

¹Maria Kalli and Jim E. Griffin. "Time-varying sparsity in dynamic regression models". In: Journal of Econometrics 178.2 (2014), pp. 779–793.

²Fengping Tian, Yang Ke, and Langnan Chen. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity". In: International Journal of Forecasting=33.1 (2017), pp=132–152.

▶ 早期只有日数据,通过为<mark>收益率</mark>建模间接计算,如 GARCH

 $\sigma_t^2 = \operatorname{Var}[y_t | \mathcal{F}_{t-1}]$

▶ 高频数据出现后,从<mark>时间序列</mark>数据直接预测,如 HAR

 $RV = \beta_0 + \beta_1 RV_{\square} + \beta_2 RV_{\square} + \beta_3 RV_{\square} + u_t, \quad u_t \sim N(0, \sigma_u^2)$

- ▶ Andersen 和 Bollerslev (1998)³首次提出 RV
- ▶ Barndoff-Niesen 和 Shephard (2004)⁴提出 BPV、MPV 等
- ▶ Corsi (2009)⁵首次提出 HAR, Corsi 等 (2010)⁶提出 TMPV

³Torben G. Andersen and Tim Bollerslev. "Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts". In: International Economic Review 39.4 (1998), pp. 885–905.

⁴Ole E. Barndorff-Nielsen and Neil Shephard. "Power and Bipower Variation with Stochastic Volatility and Jumps". In: Journal of Financial Econometrics 2.2003-W17 (2003), pp. 1–37.

⁵Fulvio Corsi. "A Simple Approximate Long-Memory Model of Realized Volatility". In: Journal of Financial Econometrics 7.2 (2009), pp. 174–196.

⁶Fulvio Corsi, Davide Pirino, and Roberto Renò. "Threshold bipower variation and the impact of jumps on volatility forecasting". In: Journal of Econometrics 159.2 (2010), pp. 276–288. < □ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□

RV 及其相关变量 I

已实现方差 (realized variance)

 ▶ 记录 *t* 日已实现方差: δ = *T*/*n* 为采样间隔⁷, *X* 为资产对数 价格, Δ_jX = X_{t+jδ} - X_{t+(j-1)δ} 为 *t* 日第 *j* 个观察间隔的收 益率, RV 可表示为:

$$\mathsf{RV}_{\delta}(X)_t = \sum_{j=1}^n (\Delta_j X)^2$$

Barndoff-Nielsen 和 Shephard (2004) 的扩展

▶ 已实现幂变差 (realized power variation)

$$\mathsf{RPV}_{\delta}(X)_t^{[\gamma]} = \delta^{1-\gamma/2} \sum_{j=1}^n |\Delta_j X|^{\gamma}, \ \gamma > 0$$

⁷对于我们研究的沪铜白天一天交易时长 4h,若数据间隔为 5min,则 T = 1, $m \Rightarrow 48$ j = 1/48 (三) シーミー ショマ の

▶ 已实现双幂变差 (realized bipower variation)

$$\mathsf{BPV}_{\delta}(X)_{t}^{[\gamma_{1},\gamma_{2}]} = \delta^{1-(\gamma_{1}+\gamma_{2})/2} \sum_{j=1}^{n-1} |\Delta_{j}X|^{\gamma_{1}} |\Delta_{j+1}X|^{\gamma_{2}}, \, \gamma_{1},\gamma_{2} > 0$$

▶ 已实现多幂变差 (realized multipower variation)

$$\mathsf{MPV}_{\delta}(X)_{t}^{[\gamma_{1},\gamma_{2},...,\gamma_{M}]} = \delta^{1-(\gamma_{1}+\gamma_{2}+...+\gamma_{M})/2} \sum_{j=1}^{n-M+1} \prod_{k=1}^{M} |\Delta_{j+k-1}X|^{\gamma_{k}}$$

▶ Barndoff-Nielsen 和 Shephard (2004) 证明:

$$\lim_{\delta \to 0} \mathsf{MPV}_{\delta}(X)_t^{[\gamma_1, \gamma_2, \dots, \gamma_M]} = \mu_{\gamma_1} \mu_{\gamma_2} \dots \mu_{\gamma_M} \int_t^{t+T} \sigma^{\gamma_1 + \gamma_2 + \dots + \gamma_M}(s) ds$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 = のへで

RV 相关变量 Ⅲ

- ▶ 其中 μ_r = 2^{r/2} Γ(1/2)/Γ(1/2)
 由于我们一般需估计 ∫_t^{t+T} σ²(s) ds,
 −般令 ∑_{k=1}^M γ_k = 2, 此时会消去 δ<sup>1−∑_kγ_k/2 标准化项; 同时
 考虑到对称性一般还会令 γ₁ = γ₂ = ... = γ_M.
 </sup>
- ▶ 引入 BPV、MPV 的意义在于,当跳出现时直接平方会造成 较大波动,而两步或多步相乘会减小跳对波动率的冲击.

Corsi (2010) 的扩展

▶ 已实现门阈多幂变差 (realized threshold MPV):

$$\mathsf{TMPV}_{\delta}(X)_{t} = \delta^{1-(\sum_{k}\gamma)/2} \sum_{j=1}^{n-M+1} \prod_{k=1}^{M} |\Delta_{j+k-1}X|^{\gamma_{k}} I_{\{|\Delta_{j+k-1}X| \leqslant \mathcal{V}_{j+k-1}\}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ 其直觉是为每个收益率定制一个门限,如果相邻几个收益率中任意一个超过该门限则全部忽略,从而减弱大跳的冲击.
 ▶ 门限函数举例: V_t = c₂² V_t, 其中

$$\widehat{V}_{t}^{Z} = \frac{\sum_{i=-L, i\neq-1, 0, 1}^{L} K\left(\frac{i}{L}\right) (\Delta_{t+i} X)^{2} I_{\{(\Delta_{t+i} X)^{2} \leqslant c_{V}^{2} \widehat{V}_{t+i}^{Z-1}\}}}{\sum_{i=-L, i\neq-1, 0, 1}^{L} K\left(\frac{i}{L}\right) I_{\{(\Delta_{t+i} X)^{2} \leqslant c_{V}^{2} \widehat{V}_{t+i}^{Z-1}\}}} Z = 1, 2, \dots$$

うしつ 山 ふ 山 マ 山 マ シ ト 山 マ うくつ

取 $K(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}, c_{\mathcal{V}} = 3, L = 25, \hat{V}^0 = +\infty$ 不断迭代 直到 $\hat{V}_t^Z = \hat{V}_t^{Z+1}$,所得门限序列与 ΔX 序列——对应. ▶ Corsi 还在 Huang 和 Tauchen(2005)⁸提出的用于检验跳的 z 统计量改进提出了 C-Tz 统计量 (Corrected Threshold z)

$$\widehat{TJ}_t = I_{\{\mathsf{C}\mathsf{-}\mathsf{T}z > \Phi_{\alpha}\}}(\mathsf{RV}_t - \mathsf{TBPV}_t)^+$$
$$\widehat{TC}_t = \mathsf{RV}_t - \widehat{TJ}_t$$

其中

$$\mathbf{C} \cdot \mathbf{T} z = \delta^{-\frac{1}{2}} \frac{(\mathbf{RV}_{\delta}(X)_T - \mathbf{C} \cdot \mathbf{TBPV}_{\delta}(X)_T) \cdot \mathbf{RV}_{\delta}(X)_T^{-1}}{\sqrt{(\mu_1^{-4} + 2\mu_1^{-2} - 5) \cdot \max\left(1, \frac{\mathbf{C} \cdot \mathbf{TTriPV}_{\delta}(X)_T}{(\mathbf{C} \cdot \mathbf{TBPV}_{\delta}(X)_T)^2}\right)}}$$

C-TBPV 及 C-TTriPV 因计算表达式相对复杂暂且略去.

⁸Xin Huang and G. Tauchen. "The Relative Contribution of Jumps to Total Price Variance". In: Journal of ▲□▶▲□▶▲□▶▲□▶ = ● ● ● Financial Econometrics 3.4 (2005), pp. 456-499.

十个统计量

▶ RV: 选取合适的 RV 估计量,其中核形式 RV 为

$$\mathsf{RV}_{t}^{q} = \sum_{j=1}^{n} (\Delta_{j}X)^{2} + 2\sum_{w=1}^{q} \left(1 - \frac{w}{q+1}\right) \sum_{j=1}^{n-w} \Delta_{j}X\Delta_{j+w}X$$

表 1: RV 及核估计量的描述性统计 ×10⁻⁴

Measure	Mean	Std.dev	Min.	Max.
r^2	0.6741	1.5122	0.0000	24.4899
RV	0.6434	0.8660	0.0402	14.6150
RV^1	0.6256	0.8742	0.0329	14.2257
RV^2	0.6165	0.8921	0.0316	14.6902
RV^3	0.6136	0.9097	0.0291	15.1221

- ▶ 作者声称采用了 TMPV^[0.5], TMPV^[1], TMPV^[1.5], 但无论从正 统定义还是关联文献看均说不通, 疑误将 TPV 当成 TMPV.
- ▶ 作者还采用了 TBPV, TJ, TC, Range(日极差)
- ▶ 我们引入了 TMPV^[²/₃,²/₃] 和 TMPV^[¹/₂,¹/₂,¹/₂] 作为补充

表 2: RV 及相关量的描述性统计9×10-4

Measure	Mean	Std.dev	Min.	Median	Max.	
RV	0.6432	0.8661	0.0402	0.3935	14.615	
TBPV	0.4126	0.5040	0.0233	0.2620	5.8891	
$\text{TMPV}^{[\frac{2}{3},\frac{2}{3},\frac{2}{3}]}$	0.3620	0.4463	0.0141	0.2270	5.1980	
$TMPV^{[rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2}]}$	0.3207	0.4138	0.0016	0.1935	4.9329	
$TPV^{[0.5]}$	675.37	159.50	204.29	655.39	1442.9	
$TPV^{[1]}$	56.688	26.962	15.028	50.499	236.75	
$TPV^{[1.5]}$	5.0704	4.0978	0.7810	3.9255	41.754	
TJ	0.1559	0.4764	0.0000	0.1597	13.051	
ТС	0.4873	0.6347	0.0233	0.3055	9.8111	
Range	99.517	61.290	15.610	82.344	647.41	

⁹数据起止时间从 2010 年 1 月 4 日至 2018 年 8 月 30 日,原始数据频率为 1 分钟,我们以 5 分钟重新采样后去除 夜盘数据计算了相关变量的日统计量,去除空值后的样本数为 2100.

动态回归

具有 p 个变量的 T 时期动态回归的模型为:

$$y_t = \sum_{i=0}^p \beta_{i,t} x_{i,t} + \epsilon_t, \quad t = 1, \dots, T$$

因为有 *T* × *p* 个未知系数却只有 *T* 个观测值,无法直接求解 解决方案

先验假设系数 $\beta_{i,1}, \ldots, \beta_{i,T}$ 服从某一随机过程:

$$\boldsymbol{\beta}_t = f(\boldsymbol{\beta}_{t-1}) + \epsilon_t, \ t = 1, \dots, T$$

该随机过程需保证部分系数 $\beta_{i,t}$ 在大部分时间接近于零,其他系数远离零,该比例通过稀疏度参数控制,而由之前学者提出的 normal-gamma 分布允许不同级别的稀疏度设定.

Normal-gamma 分布

根据 Kalli 和 Griffin (2014), NG 先验分布可写作:

 $\beta_i | \psi_i \sim \mathcal{N}(0, \psi_i), \quad \psi_i \sim \mathcal{Ga}(\lambda, \lambda/\mu)$

其中 ψ_i 可理解为第 *i* 个变量的关联度参数, λ 和 μ 则决定系数 接近或远离零的比重.

图 2: β, ψ 分布与 λ 的关系

我们先给出 K&G(2014) 对系数 β_i 所服从的 NGAR 过程的定义: 定义

$$\kappa_{i,s-1}|\psi_{i,s-1} \sim \Pr\left(\frac{\rho_i \frac{\lambda_i}{\mu_i} \psi_{i,s-1}}{1-\rho_i}\right), \quad \psi_{i,s}|\kappa_{i,s-1} \sim \operatorname{Ga}\left(\lambda_i + \kappa_{i,s-1}, \frac{\lambda_i}{\mu_i(1-\rho_i)}\right)$$

以及

$$\beta_{i,s} = \sqrt{\frac{\psi_{i,s}}{\psi_{i,s-1}}} \varphi_i \beta_{1,s-1} + \eta_{i,s}, \quad \eta_{i,s} | \psi_{i,s} \sim N\left(0, (1 - \varphi_i^2)\psi_{i,s}\right), \quad s = 2, \dots, T$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 = のへで

其中

$$\psi_{i,1} \sim \operatorname{Ga}(\lambda_i, \lambda_i/\mu_i), \quad \beta_{i,1} | \psi_{i,1} \sim \operatorname{N}(0, \psi_{i,1})$$

该过程可写作 $\beta_i \sim \operatorname{NGAR}(\lambda_i, \mu_i, \varphi_i, \rho_i).$

Normal-gamma 自回归过程 II

作者还提供了一组等价定义将 β_i 表示为两个独立随机过程的乘 积 $\beta_{i,t} = \sqrt{\psi_{i,t}}\phi_{i,t}$,其中:

• $\phi_i = (\phi_{i,1}, \dots, \phi_{i,T})$ 服从自相关参数为 φ_i 的 AR(1) 过程

 ψ_i = (ψ_{i,1},...,ψ_{i,T}) 服从自相关参数为 ρ_i 的 AR(1) 过程, 且其边缘分布服从 Ga(λ_i, λ_i/μ_i)

两级 λ 稀疏度控制——参数含义

第一层 λ_i: 假设 β_i ~ NGAR(λ_i, μ_i, φ_i, ρ_i),系数时变
 κ(β_{i,t}) = 3/λ_i, λ_i 小峰度大,则分布集中于零且变化剧烈
 Var[β_{i,t}] = μ_i, μ_i 小则 β_i 总方差小,从而总体越接近零
 φ_i 描述 β_i 序列前后相关性,大则变化平缓,小则许多尖刺
 ρ_i 描述辅助变量 ψ_i 序列前后相关性,特点与 φ_i 相似
 Var[β_{i,t}|ψ_{i,t}] = ψ_{i,t}, β_i 序列波动受 ψ_i 序列控制
 第二层 λ*: 假设 μ_i ~ Ga(λ*, λ*/μ*),因子时变

• λ^* 控制全体 μ_i 的分布,进而控制全体 β 的稀疏度

贝叶斯估计

▶ 基本思想: 根据数据更新对事件可能性的估计

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} \propto p(\mathcal{D}|\theta)p(\theta)$$

我们的 NGAR 过程先验需要通过数据更新求得后验分布.

MCMC (Markov chain Monte Carlo)

- ▶ 较复杂的后验分布可通过基于数值逼近的 MCMC 类方法求 解,这类算法包括 Metropolis-Hastings, Gibbs Sampler 等.
- ▶ 基本思想是通过智能跳跃随机搜索从后验分布中采样,其构建的 Markov 链保证足够多次转移后收敛于真实分布 p(x)
- ▶ 该算法最早由 Metropolis (1953) 提出

MCMC 基本思路

- ▶ MCMC 的每轮循环为:
 - 1. 在状态空间当前位置 θ_{current} 开始算法
 - 2. 提议跳到状态空间中一个新的位置 θ_{new}
 - 根据先验分布及数据,以一定概率接受或拒绝跳 若接受,则移动到新位置,回到第一步; 若拒绝,则呆在原地,回到第一步;

循环结束后,返回所有接受的位置,即 *p*(*x*) 的分布

▶ 构建 Markov 链的意义在于,一般情况下难以计算 p(D) 进行直接 Monte Carlo 模拟,但在 MCMC 中我们可以跳过:

$$\frac{p(\theta_{\text{new}}|\mathcal{D})}{p(\theta_{\text{cur}}|\mathcal{D})} = \frac{\frac{p(\mathcal{D}|\theta_{\text{new}})p(\theta_{\text{new}})}{p(\mathcal{D})}}{\frac{p(\mathcal{D}|\theta_{\text{cur}})p(\theta_{\text{cur}})}{p(\mathcal{D})}} = \frac{p(\mathcal{D}|\theta_{\text{new}})p(\theta_{\text{new}})}{p(\mathcal{D}|\theta_{\text{cur}})p(\theta_{\text{cur}})}$$

▶ 不同 MCMC 方法区别主要在于:什么时候跳以及怎么跳.

表 3: 不同预测窗口 h 下的 HAR-X 模型表现 (HRMSE)¹⁰

Regressor	h = 1	h = 5	h = 10	h = 15	h = 20
RV	0.4494	0.5764	0.6864	0.7596	0.8491
$TPV^{[0.5]}$	0.4916	0.5677	0.6459	0.7514	0.7869
$TPV^{[1]}$	0.4688	0.5656	0.6526	0.7451	0.8070
$TPV^{[1.5]}$	0.4704	0.5682	0.6604	0.7453	0.8169
TBPV	0.4933	0.5971	0.6822	0.7716	0.8375
TTriPV	0.5052	0.6021	0.6739	0.7702	0.8274
TQuadPV	0.5204	0.6045	0.6691	0.7707	0.8160
TJ+1	1.1861	1.2306	1.2552	1.2785	1.3017
$TJ+10^{-4}$	1.0665	1.1189	1.1509	1.1823	1.2095
ТС	0.5005	0.6123	0.7062	0.7789	0.8534
Range	0.5811	0.6978	0.7623	0.8552	0.9060

10我们预测集与测试集的分割点为 2016 年 1 月 4 日,分割比例在 70% 附近. 《 ロ 》 《 同 》 《 同 》 《 ミ 》 《 ミ 》 ミ ・ つ へ ひ

表 4: 不同预测窗口 h 下的 HAR-X 模型表现 (QLIKE)

Regressor	h = 1	h = 5	h = 10	h = 15	h = 20
RV	0.0845	0.1226	0.1535	0.1742	0.2016
$TPV^{[0.5]}$	0.1316	0.1509	0.1681	0.2025	0.2094
$TPV^{[1]}$	0.1082	0.1337	0.1542	0.1806	0.1979
$TPV^{[1.5]}$	0.1027	0.1276	0.1502	0.1730	0.1938
TBPV	0.1057	0.1319	0.1513	0.1759	0.1944
TTriPV	0.1168	0.1404	0.1553	0.1821	0.1979
TQuadPV	0.1284	0.1466	0.1589	0.1875	0.1997
TJ+ 0.1	0.2725	0.2815	0.2847	0.2875	0.2927
TC	0.1127	0.1408	0.1634	0.1828	0.2039
Range	0.1187	0.1538	0.1681	0.1944	0.2076

表 5: 不同预测窗口 h 下的 HAR-X-J 模型表现 (HRMSE)

Regressor	h = 1	h = 5	h = 10	h = 15	h = 20
RV	0.4408	0.5693	0.6806	0.7587	0.8426
$TPV^{[0.5]}$	0.4613	0.5453	0.6286	0.7328	0.7771
$TPV^{[1]}$	0.4545	0.5555	0.6454	0.7366	0.8037
$TPV^{[1.5]}$	0.4648	0.5643	0.6579	0.7423	0.8162
TBPV	0.4696	0.5798	0.6697	0.7570	0.8310
TTriPV	0.4725	0.5782	0.6556	0.7501	0.8173
TQuadPV	0.4838	0.5770	0.6473	0.7476	0.8039
ТС	0.4433	0.5702	0.6736	0.7430	0.8341
Range	0.5808	0.6971	0.7621	0.8558	0.9060

表 6: 不同预测窗口 h 下的 HAR-X-J 模型表现 (QLIKE)

Regressor	h = 1	h = 5	h = 10	h = 15	h = 20
RV	0.0836	0.1218	0.1529	0.1741	0.2011
$\mathrm{TPV}^{[0.5]}$	0.1135	0.1365	0.1562	0.1879	0.2012
$TPV^{[1]}$	0.0998	0.1268	0.1487	0.1728	0.1945
$TPV^{[1.5]}$	0.0992	0.1245	0.1478	0.1688	0.1926
TBPV	0.0937	0.1220	0.1438	0.1660	0.1896
TTriPV	0.0998	0.1270	0.1445	0.1693	0.1909
TQuadPV	0.1086	0.1312	0.1462	0.1731	0.1916
TC	0.0851	0.1190	0.1459	0.1625	0.1924
Range	0.1185	0.1526	0.1675	0.1923	0.2077

基本思想

- ▶ 类似参数的置信区间,理想模型是给定置信度下的一组模型
- ▶ 通过从初始模型集中逐一淘汰表现不佳的模型得到

具体步骤

- ▶ 假设有 m₀ 个模型,模型 i 在 t 时期的损失函数为
 L_{i,t} = L (Ŷ_{i,t}, Y_{i,t})。对于不同的模型 i 和模型 j,定义 t 时
 期相对表现变量 d_{ij,t} ≡ L_{i,t} L_{j,t},其中 µ_{ij} = ∑ⁿ_{t=1} d_{ij,t}.
- ▶ 每轮判定是否需要终止 MCS 检验,其原假设形式为: H_{0,M}: µ_{ij} = 0,若否则根据相关统计量剔除一个表现最差的模型,直到 MCS 假设判定"无法区分"为止.

表 7: 不同预测窗口长度 h 下的 MCS 结果 (HRMSE 与 QLIKE)

	h = 1			h = 5			h = 20				
MCS	T_R	T_{SQ}	MCS	Т	R	T_{SQ}	MCS		Т	R	T_{SQ}
TVS TPV[0.5] TPV[1] TPV[1.5]	1.000 0.6517 0.0862 0.0862	1.000 0.6517 0.1065 0.0913	TVS TPV ^{[0} TPV ^[1] TMPV	$\begin{array}{c} 1.0\\ 0.29\\ 0.20\\ 0.20\\ 0.20\\ 0.20\end{array}$	00 908 005 005	1.000 0.2908 0.1049 0.1034	TVS TPV TMP TPV	[0.5] V ^[4] [1.5]	1.0 0.00 0.00	000 608 608 608	$\begin{array}{c} 1.000 \\ 0.0445 \\ 0.0445 \\ 0.0445 \end{array}$
	h = 1			h = 5				h =	20		
MCS	T_R	T_{SQ}	MCS	T_R	T_S	SQ	MCS	T_{i}	R	T_{S}	2
TVS TBPV C TPV ^[1]	1.000 0.3592 0.3592 0.3592	1.000 0.2842 0.2842 0.2842	TVS Range C TBPV	$ \begin{array}{r} 1.000 \\ 0.4695 \\ 0.4695 \\ 0.4695 \\ \end{array} $	1.0 0.46 0.40 0.40	00 570 570 570	TVS J Range C	1.0 0.53 0.53 0.53	00 352 352 352	1.00 0.33 0.33 0.33	00 21 21 21 21

结论

- 1. 所采用的 HAR-TVS 模型在两个指标及各预测窗口长度检验 下,对我国沪铜市场波动率的预测具有显著最优的表现.
- 2. MCS 检验结果会受到误差函数选择的影响,且所得结果与 误差函数直接得出的结果具有一定相似性.

不足及未来改进方向

- Tian (2017)的原文采用了更复杂的模型作为对照,而我们 的结果是基于简单单变量模型对比得出的,因此缺乏足够的 说服力;未来应考虑引入其他多变量动态回归模型做对比。
- 2. 未对沪铜的具体特性进行足够深入的研究,因此缺乏将模型 应用于沪铜的具体理由。未来应考虑对沪铜产品本身进行更 细致的分析,并于其它相似品种对比,仔细分析其可行性。

感谢聆听!

Zizhou Sang

基于时变稀疏度 HAR 模型的沪铜已实现波动率预测

э May 31, 2019 27/27

590

イロト イロト イヨト イヨト